

Vestibular 2016 Medicina

002. Prova de Conhecimentos Específicos e Redação

- Confira seus dados impressos neste caderno.
- Assine com caneta de tinta azul ou preta apenas no local indicado. Qualquer identificação fora do local indicado acarretará a atribuição de nota zero a esta prova.
- Esta prova contém 20 questões discursivas e uma proposta de redação.

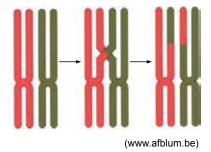
Assinatura do candidato

- A resolução e a resposta de cada questão devem ser apresentadas no espaço correspondente, utilizando caneta de tinta azul ou preta. Não serão consideradas questões resolvidas fora do local indicado.
- Encontra-se neste caderno a Classificação Periódica, a qual, a critério do candidato, poderá ser útil para a resolução de questões.
- Esta prova terá duração total de 4h e o candidato somente poderá sair do prédio depois de transcorridas 3h, contadas a partir do início da prova.
- Ao final da prova, antes de sair da sala, entregue ao fiscal a Folha de Redação e o Caderno de Questões.

Nome do candidato	
Prédio Sala Carteira Inscrição	AUSENTE

Piolhos (*Pediculus humanus*) são parasitas hematófagos mais comuns em crianças. Esses parasitas passam pelas fases de ovo, ninfa e adulta, em alguns dias, e se instalam nos cabelos das pessoas. A maioria dos medicamentos (piolhicidas) existentes, usados no combate a estes parasitas, não consegue eliminá-los.

- a) Que nome se dá ao desenvolvimento indireto dos piolhos? O que é um animal hematófago?
- **b)** Quanto mais tempo de mercado tem um piolhicida, tanto maior é a chance desse medicamento não fazer efeito sobre os piolhos. Dê uma explicação para esse fato, baseando-se na moderna teoria da evolução.



RESOLUÇÃO E RESPOSTA	
2	511111501 200 0 5 70 5 7

A imagem ilustra um fenômeno que ocorre durante uma das fases da meiose I.

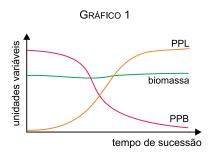
- a) Nomeie a fase em que ocorre esse fenômeno. Explique em que consiste esse fenômeno.
- b) Além do fenômeno ilustrado, existe outro que aumenta as combinações genéticas e que ocorre na metáfase I. O que caracteriza essa fase? Por que ela promove diferentes combinações genéticas?

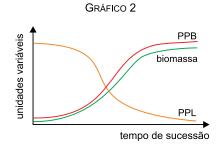
RESOLUÇÃO E RESPOSTA
 4

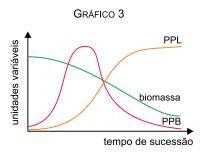
O consumo excessivo de álcool provoca danos ao fígado e ao pâncreas, glândulas fundamentais no metabolismo energético.

- a) Cite duas organelas das células hepáticas responsáveis pela degradação da molécula de álcool.
- b) Explique como o pâncreas atua na formação da reserva de moléculas de glicogênio hepático.

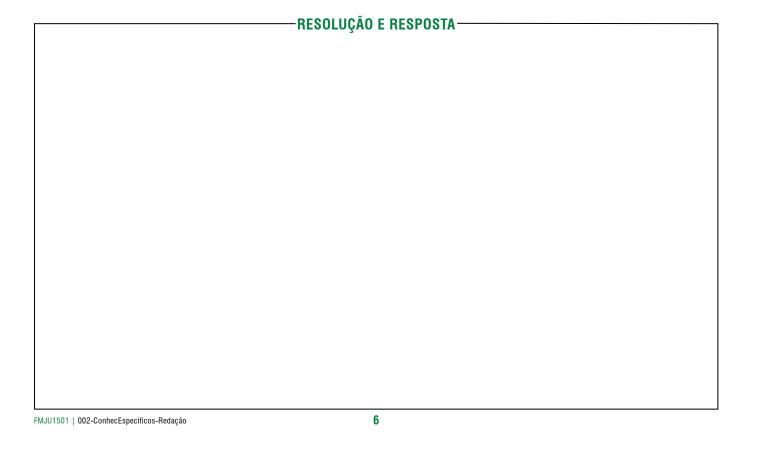
RESOLUÇÃO E RESPOSTA————————————————————————————————————		
5	FM.III1501 002-ConhecEspecíficos-Redacão	






Antigos vagões de metrô e navios estão sendo descartados no oceano Atlântico, a profundidades entre 20 e 30 metros. O objetivo dessa iniciativa é que essas estruturas funcionem como locais para a formação de recifes de corais artificiais.

(Folha de S.Paulo, 06.02.2015. Adaptado.)


- a) Indique o tipo de sucessão ecológica que ocorrerá nas estruturas afundadas. O que caracteriza esse tipo de sucessão?
- b) Os gráficos indicam variações relacionadas à biomassa, à produtividade primária liquída (PPL) e à produtividade primária bruta (PPB). Qual gráfico exprime corretamente o que acontece durante uma sucessão ecológica? Justifique sua escolha de acordo com as informações contidas no gráfico.

RASCUNHO

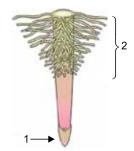
O sistema nervoso é formado por bilhões de neurônios, que possibilitam a condução do impulso nervoso em um único sentido. Cada neurônio, por sua vez, é constituído por três regiões específicas, sendo que apenas uma delas é envolvida pelo estrato mielínico (bainha de mielina).

- a) Cite as três regiões do neurônio que permitem a propagação do impulso nervoso num sentido único. Qual é a vantagem da presença do estrato mielínico na condução do impulso nervoso?
- b) Explique como um neurônio consegue "se comunicar" com outro neurônio sem ter contato físico.

RESOLUÇÃO E RESPOSTA		
	7	FMUIAFOA L 000 Carbas Faras (Sara Padas)

Os mamíferos ruminantes apresentam um estômago com quatro compartimentos: rúmen (pança), retículo (barrete), omaso (folhoso) e abomaso (coagulador).

- a) Sabe-se que existem micro-organismos na região do rúmen e do retículo. Qual o principal papel desses micro-organismos na digestão dos vegetais ingeridos pelos ruminantes? Explique por que o fornecimento excessivo de antibióticos aos ruminantes pode fazê-los emagrecer.
- b) Qual compartimento do estômago dos ruminantes tem o papel análogo ao estômago humano? Como ocorre a digestão química nesse compartimento do estômago dos ruminantes?



RESOLUÇÃO E RESPOSTA	
0	

A figura ilustra algumas das principais partes da raiz de uma planta eudicotiledônea.

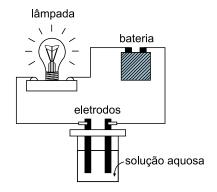
(http://ssccglpinnacle.com. Adaptado.)

- a) Indique as funções das estruturas apontadas pelos números 1 e 2, respectivamente.
- b) No interior da raiz existe a endoderme, formada por células bem unidas entre si e dotadas de reforços impermeáveis, chamadas estrias de Caspary. Explique a vantagem desses reforços impermeáveis que auxiliam na principal função da raiz.

RESOLUÇÃO E RESPOSTA		
HEGGEGGAG E HEGI GOLA		
q	FM.III1501 002-ConhecEspecíficos-Redação	

Certa espécie de roedor possui um alelo *A* que determina a cor amarela dos pelos e que, em homozigose, é letal na fase embrionária. O alelo *a* determina a cor aguti dos pelos. Em outro *locus*, o alelo *B* determina a cor negra dos olhos e o alelo *b*, a cor mel dos olhos. Tais *loci* segregam-se de maneira independente.

- a) Indique um possível genótipo de um animal aguti e de olhos negros. Indique o fenótipo de um animal Aabb.
- **b)** Considere o cruzamento *AaBb x AaBb*. Determine a probabilidade de nascer um macho aguti com olhos cor de mel. Apresente os cálculos.



RESOLUÇÃO E RESPOSTA		
4504 000 Ocabes Francisco Dadasia		

Considere o esquema de um sistema utilizado para demonstrar a condutividade elétrica de soluções e a tabela que apresenta três soluções aquosas, de mesma concentração, testadas nesse sistema.

	Soluções	Constante ácida a 25 °C (K _a)
1	HCℓO ₂	1,1×10 ⁻²
2	CH ₃ COOH	1,8×10 ⁻⁵
3	C ₆ H ₅ OH	1,3×10 ⁻¹⁰

O circuito elétrico desse sistema se fecha quando os eletrodos são imersos numa solução contendo íons livres, um material condutor. A lâmpada brilha com intensidade proporcional à passagem de corrente elétrica e à concentração de íons livres na solução.

- a) A lâmpada apresentou menor intensidade luminosa quando qual solução foi testada? Justifique sua resposta.
- **b)** O equilíbrio químico envolvido na ionização do composto presente na solução de número 2 pode ser representado pela equação:

$$CH_3COOH(aq) \rightleftharpoons H^+(aq) + CH_3COO^-(aq)$$

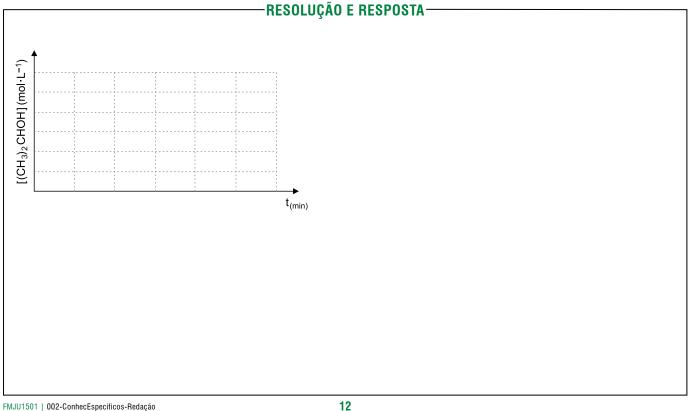
Considerando que uma amostra desse ácido foi diluída com água até se obter uma solução com concentração de íons H^+ igual a 10^{-4} mol· L^{-1} a 25 °C, determine o valor da concentração, em mol· L^{-1} , do ânion e do ácido nessa solução. Apresente os cálculos efetuados.

RESOLUÇÃO E RESPOSTA————————————————————————————————————		
	3	
	11	FMJU1501 002-ConhecEspecíficos-Redação

O álcool isopropílico desempenha papel fundamental como antisséptico e desinfetante devido ao seu custo reduzido, baixa toxicidade e facilidade de aquisição e aplicação.

(www.anvisa.gov.br. Adaptado.)

O álcool isopropílico pode ser convertido em acetona pelo processo descrito pela equação, com rendimento de 90%.


$${(\mathsf{CH}_3)}_2\mathsf{CHOH}\left(g\right) \xrightarrow{\quad \mathsf{Cu}\left(s\right) \quad } {(\mathsf{CH}_3)}_2\mathsf{CO}\left(g\right) + \mathsf{H}_2\left(g\right)$$

A tabela apresenta diferentes concentrações de álcool isopropílico em função do tempo de reação, em minutos.

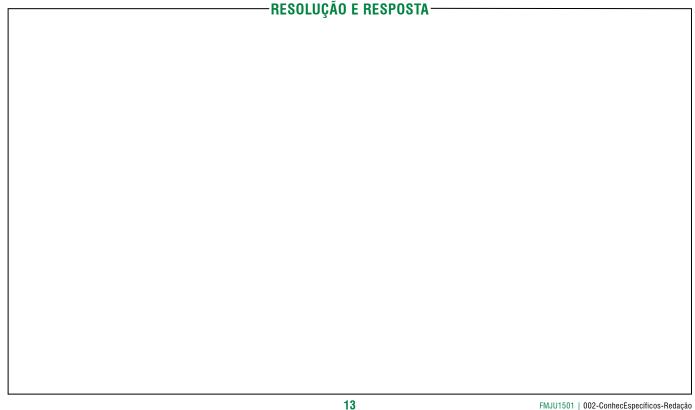
Experimentos	1	2	3	4	5	6
Tempo (min)	0	30	60	90	120	150
$[(CH_3)_2CHOH](mol \cdot L^{-1})$	5×10 ⁻²	4×10 ⁻²	2,5×10 ⁻²	2×10 ⁻²	1,5×10 ⁻²	1×10 ⁻²

- a) Desenhe a curva representativa dos dados da tabela no gráfico inserido no campo de Resolução e Resposta e explique por que os valores da velocidade de consumo do álcool, em mol·L⁻¹·min⁻¹, são diferentes nos intervalos de 0 a 30 minutos e de 30 a 60 minutos.
- b) Considere que as massas molares do álcool isopropílico e da acetona são, respectivamente, 60 g·mol⁻¹ e 58 g·mol⁻¹. A partir de 180 g de álcool isopropílico com 100% de pureza, calcule a massa, em gramas, de acetona obtida no processo descrito pela equação.

O gás nitrogênio presente na atmosfera pode sofrer uma sequência de transformações, representadas pelo esquema:

$$N_2(g) \xrightarrow{Q_2(ar)} NO(g) \xrightarrow{Q_2(ar)} NO_2(g) \xrightarrow{Q_2(ar)} HNO_3(aq) \longrightarrow solo$$

descarga elétrica


dos raices

des raices

 $NO(g) \xrightarrow{Q_2(ar)} NO_2(g) \xrightarrow{Q_2(ar)} NO_3(aq) \longrightarrow solo$

- a) Escreva a equação representativa da reação do zinco metálico com a substância formada nesta sequência de transformações que prejudica a qualidade do solo.
- b) Considerando uma mistura gasosa constituída por 2 mol de nitrogênio e 3 mol de monóxido de nitrogênio, armazenada em um cilindro a 2 atm, determine, para cada componente, a pressão parcial, em atm, no interior desse cilindro. Apresente os cálculos.

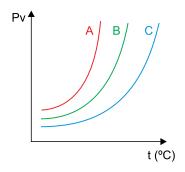
A taxa normal de ureia no sangue deve ser de 3.6×10^{19} moléculas \cdot dL⁻¹ a 8.3×10^{19} moléculas \cdot dL⁻¹. Quando acima do valor máximo, considera-se um quadro de hiperuremia e, quando abaixo do valor mínimo, considera-se um quadro de hipouremia. A taxa de ureia no sangue é determinada por fatores como hábitos alimentares, hidratação corporal, sedentarismo e o próprio metabolismo.

(www.infoescola.com. Adaptado.)

- a) Sabendo que a ureia pode ser obtida a partir da reação entre o CO₂ e o NH₃, indique as forças intermoleculares que mantêm unidas as moléculas presentes em cada uma das substâncias reagentes.
- **b)** Considere a constante de Avogadro igual a $6 \times 10^{23} \text{ mol}^{-1}$, a massa molar da ureia sendo de $60 \text{ g} \cdot \text{mol}^{-1}$ e que um indivíduo apresente 2,4 mg dL⁻¹ de ureia em seu sangue. Com relação à taxa de ureia no sangue, qual é o diagnóstico do indivíduo? Apresente os cálculos efetuados.

FM.III1501 002-ConhecEspecíficos-Redação	14	

Os monômeros buta-1,3-dieno e 2-cloro-buta-1,3-dieno são muito utilizados na fabricação de borrachas sintéticas, sendo, este último, também conhecido como cloropreno, uma substância resistente a mudanças de temperatura, à ação do ozônio e ao clima adverso.

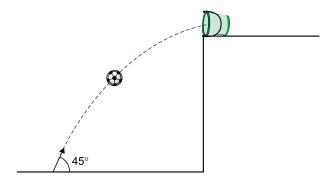

- a) Escreva as fórmulas estruturais dos monômeros mencionados.
- b) A partir do monômero 2-cloro-buta-1,3-dieno é obtido o 2-cloro-but-2-eno conhecido comercialmente como neopreno, um elastômero sintético. Escreva a reação de obtenção do neopreno a partir do cloropreno e indique o tipo de isomeria espacial que ocorre nesse elastômero.

RESOLUÇÃO E RESPOSTA	

Considere os sistemas 1, 2 e 3 numa mesma temperatura e o comportamento de cada um desses sistemas representados no gráfico.

- 1. Água pura.
- 2. Solução aquosa $0.5 \text{ mol} \cdot L^{-1}$ de glicose.
- 3. Solução aquosa 0,5 mol· L^{-1} de KC ℓ .

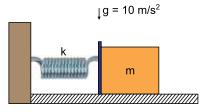
- a) Associe cada um dos sistemas (1, 2 e 3) a cada uma das curvas (A, B e C) e indique qual o sistema mais volátil.
- **b)** A adição de um soluto não volátil aumenta ou diminui a pressão máxima de vapor de um solvente? Justifique sua resposta.



Uma bola de massa 1 kg é chutada a 12 m/s, a partir do solo, formando um ângulo de 45° com a horizontal. Ao atingir o ponto mais alto de sua trajetória, a bola colide e adere a um balde de massa 2 kg, que se encontra em repouso na extremidade de uma plataforma plana e horizontal, conforme mostra a figura.

Considerando a aceleração da gravidade 10 m/s², $\sqrt{2} \cong 1,4$ e a resistência do ar desprezível, determine:

- a) a altura máxima, em metros, atingida pela bola.
- b) a velocidade da bola, em m/s, imediatamente antes e depois da colisão totalmente inelástica com o balde.

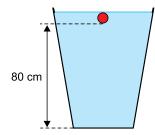


RESOLUÇÃO E RESPOSTA	
neoceana e neo com	
17	FMJU1501 002-ConhecEspecíficos-Redação

A figura mostra uma mola ideal, de constante elástica k = 100 N/m, com uma extremidade fixa numa parede e a outra encostada a um bloco de massa m = 5 kg, apoiado sobre uma superfície plana e horizontal.

O coeficiente de atrito estático e o coeficiente de atrito cinético entre o bloco e a superfície de apoio são iguais a 0,5 e 0,4, respectivamente.

- a) Determine a compressão máxima da mola, em metros, que mantém o bloco em equilíbrio estático.
- b) Considerando a resistência do ar desprezível e que o bloco tenha partido do repouso quando a mola estava comprimida de 0,50 m, calcule a velocidade do bloco, em m/s, no instante em que ele perde contato com a mola.

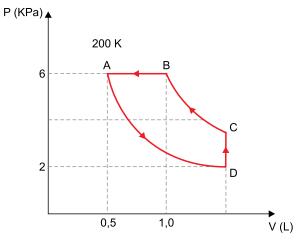


	RESOLUÇÃO E RESPOSTA	
MJU1501 002-ConhecEspecíficos-Redação	18	

Uma esfera rígida de volume 5 cm³ e massa 100 g é abandonada em um recipiente, com velocidade inicial nula, totalmente submersa em um líquido, como mostra a figura.

Verifica-se que a esfera leva 4 s para atingir o fundo do recipiente, a 80 cm de profundidade. Considerando $g = 10 \text{ m/s}^2 \text{ e}$ que apenas as forças peso e empuxo atuem sobre a esfera, determine:

- a) a velocidade, em m/s, com que a esfera toca o fundo do recipiente.
- b) a densidade do líquido, em g/cm³.



RESOLUÇÃO E RESPOSTA—	
19	FM III 1 FO1 1 000 Conhectenessificae Pedesão
19	FMJU1501 002-ConhecEspecíficos-Redação

Um gás ideal, contido num recipiente dotado de êmbolo móvel, descreve um ciclo térmico ADCBA, como mostra o gráfico.

O processo entre A e D e entre C e B são isotérmicos. Com base no gráfico e sabendo que a temperatura em A é 200 K, determine:

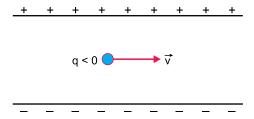
- a) os trechos do ciclo ADCBA onde o processo é isocórico e onde é isobárico.
- b) o volume do gás ideal no ponto D e a temperatura da isoterma que liga os pontos B e C, em Kelvin.

	RESOLUÇÃO E RESPOSTA	
FMJU1501 002-ConhecEspecíficos-Redação	20	

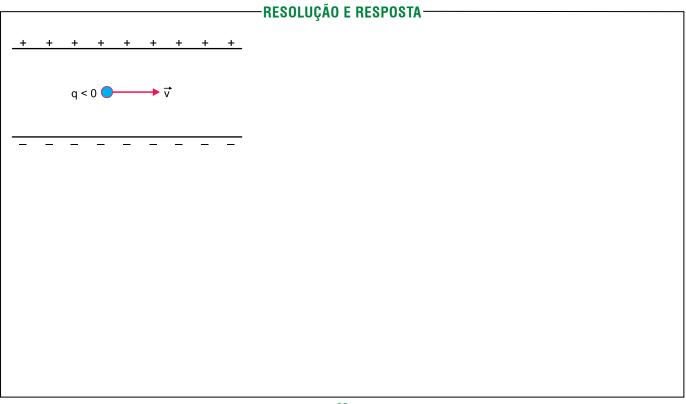
Um objeto é colocado perpendicularmente sobre o eixo principal de um espelho esférico de distância focal 2 m, que atende às condições de nitidez de Gauss. A imagem formada é virtual, direita e com o dobro do comprimento do objeto.

Nas condições descritas, relativas à natureza e à posição da imagem formada, determine:

- a) o tipo do espelho esférico empregado.
- b) a distância, em metros, do objeto ao vértice do espelho esférico.



—RESOLUÇÃO E RESPOSTA —	
3	
 21	FMJU1501 002-ConhecEspecíficos-Redação


Duas placas longas, planas e eletrizadas com sinais opostos e de mesmo módulo, dispostas paralelamente e distanciadas de 20 cm uma da outra, apresentam entre si diferença de potencial 200 V. Uma carga elétrica q, de sinal negativo e peso desprezível, é mantida em movimento entre as placas, paralelamente a elas e com velocidade v igual a 100 m/s, como mostra a figura.

- a) Represente, na figura reproduzida no espaço de Resolução e Resposta, os vetores campo elétrico e força elétrica atuantes na carga, enquanto ela estiver na região central entre as duas placas.
- b) Considere desprezíveis os efeitos de bordas das placas eletrizadas e que a intensidade da força magnética atuante na carga q seja dada por F_{mag} = Bqvsen θ , em que B é a intensidade do campo magnético e θ é o ângulo formado entre as linhas do campo magnético com a direção de v.

Determine o módulo, em tesla, e o sentido do vetor campo magnético \overrightarrow{B} que deve ser aplicado na região central entre as placas e perpendicularmente ao plano da figura, para manter a velocidade da carga constante em módulo e direção.

CLASSIFICAÇÃO PERIÓDICA

1																	18
1 H 1,01	2											13	14	15	16	17	2 He 4,00
3 Li 6,94	4 Be 9,01											5 B 10,8	6 C 12,0	7 N 14,0	8 O 16,0	9 F 19,0	10 Ne 20,2
11 Na 23,0	12 Mg 24,3	3	4	5	6	7	8	9	10	11	12	13 Al 27,0	14 Si 28,1	15 P 31,0	16 S 32,1	17 CI 35,5	18 Ar 39,9
19 K 39,1	20 Ca 40,1	21 Sc 45,0	22 Ti 47,9	23 V 50,9	24 Cr 52,0	25 Mn 54,9	26 Fe 55,8	27 Co 58,9	28 Ni 58,7	29 Cu 63,5	30 Zn 65,4	31 Ga 69,7	32 Ge 72,6	33 As 74,9	34 Se 79,0	35 Br 79,9	36 Kr 83,8
37 Rb 85,5	38 Sr 87,6	39 Y 88,9	40 Zr 91,2	41 Nb 92,9	42 Mo 95,9	43 Tc (98)	44 Ru 101	45 Rh 103	46 Pd 106	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57-71 Série dos Lantanídio		73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 TI 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 Série dos Actinídios		105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (277)	109 Mt (268)	110 Ds (271)	111 Rg (272)							<u>,</u>
			Série dos	Lantanío	lios												
Sí	Número Atômico Símbolo		57 La 139	58 Ce 140	59 Pr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 163	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
Mass	Massa Atômica Sér		Série dos	Actinídio	s												
1 ' '	() = n.° de massa do isótopo mais estável		89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 N p (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

(IUPAC, 22.06.2007.)

TEXTO 1

Um estudo referente ao ano de 2014 revelou que o Brasil é o vice-campeão mundial de pirataria digital. O país fica apenas atrás dos Estados Unidos quando o assunto são downloads feitos de forma irregular.

Segundo o estudo, o Brasil fica na vice-liderança tanto na quantidade de usuários únicos que fazem downloads quanto no volume total de arquivos baixados.

("Brasil é vice-campeão mundial em ranking de pirataria". http://olhardigital.uol.com.br, 19.02.2015. Adaptado.)

Texto 2

Dois campos rivais dominam o debate em torno da ética da pirataria digital.

Por um lado, há os que acreditam que o download ilegal é equivalente ao roubo comum. O raciocínio é basicamente assim: se você não roubaria um carro, não roubaria uma bolsa e não roubaria uma televisão, você não roubaria um filme. Logo, baixar filmes piratas é roubar.

De acordo com esse grupo, os detentores de propriedade intelectual merecem tanta proteção e meios de reparação quanto aqueles que tiveram suas bolsas ou televisores roubados, incluindo sanções civis e criminais contra aqueles que violaram qualquer tipo de propriedade intelectual. Para eles, as penalidades enormes que às vezes são ligadas a downloads ilegais são importantes porque enviam uma mensagem clara de que esta prática não deve ser tolerada.

Por outro lado, há os que pensam que todas as ideias e criações artísticas devem ser comuns e livremente acessíveis a todos. Na opinião desse segundo grupo, a propriedade intelectual, sob a forma de direitos autorais e patentes, injustamente restringe o acesso a ideias e a formas de expressão cultural. Eles consideram o download ilegal um crime sem vítimas e não acham que isso imponha custos significativos sobre ninguém. Ainda na opinião deles, as graves sanções penais que, por vezes, são aplicadas a pessoas que fazem downloads ilegais são injustificadas.

("Fazer download é roubar? A ética da pirataria digital". http://contilnetnoticias.com.br, 16.04.2015. Adaptado.)

TEXTO 3

O Popcorn Time é um site que se aproveita de brechas legais para oferecer, gratuitamente, um serviço "pirata" de filmes e séries online. Para combater esse rival desleal, as produtoras norte-americanas estão indo para cima do lado mais vulnerável dessa relação: o usuário.

Poucos dias após 11 pessoas terem sido processadas por terem usado a plataforma para ver a comédia *Trocando* os Pés, a produtora do filme *Survivor* aproveitou o precedente para fazer o mesmo com 16 usuários. Intitulado *Survivor* Productions Inc. contra Usuários Anônimos do Popcorn Time, o processo reivindica 750 dólares dessas pessoas, sob a alegação de violação de direitos autorais.

Segundo o advogado responsável pelo caso, Carl Crowell, o objetivo não é criar uma nova forma de arrecadação com "ingressos caros", mas coibir esse tipo de violação. "O Popcorn Time existe por um único propósito: roubar conteúdo protegido por direitos autorais".

("Usuários do Popcorn Time são processados pela produtora de *Survivor*". http://www.hojemais.com.br, 08.09.2015. Adaptado.)

TEXTO 4

Sempre que se discute a revolução promovida pela popularização da pirataria digital e do download, a conversa acaba, invariavelmente, no futuro da indústria – quantos bilhões de dólares as gravadoras deixaram de ganhar? E a indústria do cinema? Talvez já esteja na hora de inverter o foco da discussão e analisar as mudanças do ponto de vista do "pirata". O que a sociedade ganhou com a disseminação do compartilhamento ilegal? A verdade é que, ao democratizar a cultura, a pirataria digital pode ter ajudado toda uma geração a se tornar mais culta e informada.

("O bem que a pirataria nos faz". http://opiniaoenoticia.com.br, 24.02.2013. Adaptado.)

Com base em seus conhecimentos e nos textos apresentados, redija uma dissertação, na norma-padrão da língua portuguesa, sobre o tema:

PIRATARIA DIGITAL: DEMOCRATIZAÇÃO DA CULTURA OU CRIME A SER PUNIDO?

Os rascunhos não serão considerados na correção.

