





1<sub>o</sub> Semestre de 2016 Processo Seletivo medicina

001. Prova I

- Confira seus dados impressos neste caderno.
- Assine com caneta de tinta azul ou preta apenas no local indicado. Qualquer identificação fora do local indicado acarretará a atribuição de nota zero a esta prova.
- Esta prova contém 20 questões discursivas e uma proposta de redação.
- A resolução e a resposta de cada questão devem ser apresentadas no espaço correspondente, utilizando caneta de tinta azul ou preta. Não serão consideradas questões resolvidas fora do local indicado.
- Encontra-se neste caderno a Classificação Periódica, a qual, a critério do candidato, poderá ser útil para a resolução de questões.
- Esta prova terá duração total de 4h e o candidato somente poderá sair do prédio depois de transcorridas 3h, contadas a partir do início da prova.
- Ao final da prova, antes de sair da sala, entregue ao fiscal a Folha de Redação e o Caderno de Questões.

| Nome do candidato                          |         |
|--------------------------------------------|---------|
| Prédio———————————————————————————————————— | ausente |
| Assinatura do candidato                    |         |











Nesta última década, assistiu-se a um aumento na demanda por pilhas e baterias cada vez mais leves e de melhor desempenho. Consequentemente, existe atualmente no mercado uma grande variedade de pilhas e baterias que utilizam níquel, cádmio, zinco e chumbo em suas fabricações. Usadas em automóveis, as baterias de chumbo, conhecidas como chumbo-ácido, apresentam um polo negativo, constituído de chumbo metálico, e um polo positivo, constituído de óxido de chumbo(IV).

polo negativo: Pb (s) + SO 
$$^{-2}$$
 (aq)  $\rightarrow$  PbSO (s) + 2 e  $^{-1}$  E° = + 0,36 V polo positivo: PbO (s) + SO  $^{-2}$  (aq) + 4H  $^{+}$  + 2 e  $^{-1}$   $\rightarrow$  PbSO (s) + 2H O ( $\ell$ ) E° = + 1,68 V

(www.qnint.sbq.org.br. Adaptado.)

- a) Baseando-se na localização dos elementos cádmio e zinco em seus estados mais estáveis na Classificação Periódica, indique qual desses elementos apresenta maior raio atômico. Justifique sua resposta.
- b) Considerando os potenciais de redução padrão medidos a 25 °C e as semirreações nos eletrodos da bateria chumboácido, indique o anodo e calcule, em volts, o valor da diferença de potencial da reação global.

| 1 | S FSTI | M1502   001-Prova-I-Discursiva |
|---|--------|--------------------------------|





O gás dióxido de enxofre ( $SO_2$ ), pode ser produzido pela decomposição do tiossulfato de sódio ( $Na_2S_2O_3$ ), conforme a equação descrita, reagindo com a água da atmosfera e produzindo a chuva ácida. Em altas concentrações, esse gás reage ainda com a água dos pulmões formando ácido sulfuroso ( $H_2SO_3$ ), o que provoca hemorragias.

$$S_2O_3^{-2}(aq) + 2H_3O^+(aq) \rightarrow S(s) + SO_2(g) + 3H_2O(\ell)$$

- a) Cite um procedimento físico que pode ser empregado para separar o enxofre sólido da mistura resultante da decompo-sição do tiossulfato de sódio. Justifique sua resposta.
- **b)** Escreva a equação representativa da reação do dióxido de enxofre com a água dos pulmões e determine o teor percen-tual, em massa, de enxofre presente no produto formado. Apresente os cálculos.

| RESolução e resposta |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |





Um estudo publicado pela revista Nature aponta que a quantidade de metano (CH<sub>4</sub>) liberada por alguns poços de gás de xisto (cuja composição química padrão apresenta, além de outros compostos, o óxido de ferro(III) e o óxido de alumínio) seria cerca de 4 vezes maior que o previsto, o que o tornaria uma fonte de energia emissora de gás de efeito estufa tão nociva quanto o carvão. A combustão completa do metano produz outro gás estufa, o CO2, de acordo com a reação:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$$

(www.lqes.iqm.unicamp.br. Adaptado.)

- a) Escreva as fórmulas químicas dos óxidos presentes na composição do xisto, sabendo que nesses compostos a carga do ferro e do alumínio é +3.
- b) Supondo que a reação de combustão completa do metano seja elementar, escreva a expressão da lei de velocidade dessa reação. Explique o que irá acontecer com a velocidade se a concentração do metano for dobrada e a concentra-ção do oxigênio permanecer constante.

| I |   |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
| l | 5 |





A tabela apresenta os valores da concentração de íons H<sup>+</sup>, em mol/L, medidos a 25 °C, de um grupo de produtos.

| Produto           | [H <sup>+</sup> ] |
|-------------------|-------------------|
| refrigerante      | 10 <sup>-3</sup>  |
| alvejante caseiro | 10-12,5           |
| vinho             | 10-3,5            |
| leite de magnésia | 10 <sup>-10</sup> |
| cerveja           | 10-4,5            |

- a) Na tabela reproduzida no campo de Resolução e Resposta, complete o valor medido de pH a 25 °C.
- **b)** Determine a concentração de íons hidroxila, [OH¯], em mol/L, no leite de magnésia, apresentando os cálculos. Apresente um produto da tabela com propriedades para neutralizar o pH do leite de magnésia.

| Produto           | [H <sup>+</sup> ]  | рН |
|-------------------|--------------------|----|
| refrigerante      | 10 <sup>-3</sup>   | ·  |
| alvejante caseiro | 10-12,5            |    |
| vinho             | 10-3,5             |    |
| leite de magnésia | 10-10              |    |
| cerveja           | 10 <sup>-4,5</sup> |    |





A água oxigenada é uma solução aquosa de peróxido de hidrogênio  $(H_2O_2)$  indicada como agente bactericida nos ferimentos externos. É comercializada em frascos de plásticos opacos, pois a luz é um dos fatores responsáveis pela decomposição do peróxido de hidrogênio em água e gás oxigênio  $(O_2)$ .

- a) Escreva a fórmula estrutural do peróxido de hidrogênio, sabendo que nessa estrutura os átomos de oxigênio estão ligados entre si e que cada átomo de hidrogênio está ligado a um átomo de oxigênio. Indique o nome da força intramo-lecular que mantém unidos os átomos presentes em sua estrutura.
- b) Na decomposição de 136 g de peróxido de hidrogênio foram liberados 38 L de gás oxigênio. Considere que a massa molar do peróxido de hidrogênio seja, aproximadamente 34 g/mol e que o volume molar do gás oxigênio, a 0 °C e 1 atm, seja 22,4 L/mol. Escreva a equação balanceada que representa a decomposição do peróxido de hidrogênio e calcule o rendimento dessa reação. Apresente os cálculos.

|  | 7 |  |  |
|--|---|--|--|





A Anvisa não registra alisantes capilares conhecidos como "escova progressiva" que tenham como base o formol (metanal) em sua fórmula. A substância só tem uso permitido em cosméticos nas funções de conservante com limite máximo de 0,2% em massa, solução cuja densidade é 0,92 g/mL.

(www.anvisa.gov.br. Adaptado.)



- a) Escreva a fórmula molecular do formol. Sabendo-se que a constante de Avogadro é 6 × 10<sup>23</sup> mol<sup>-1</sup>, calcule o número de moléculas contidas em 1 g dessa substância, cuja massa molar é igual a 30 g/mol.
- b) Calcule a concentração, em g/L, da solução de formol citada no texto. Apresente os cálculos.

|    | RESolução e resposta |
|----|----------------------|
|    | -                    |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
|    |                      |
| L. |                      |





No processo de produção de ferro metálico (Fe), ocorre a redução do óxido ferroso (FeO) com monóxido de carbono (CO) de acordo com a equação representativa da reação:

FeO (s) + CO (g) 
$$\rightarrow$$
 Fe (s) + CO<sub>2</sub> (g)

Considere os seguinte dados:

| Substância          | $\Delta H_{\rm f}^{0}$ (kJ/mol) |
|---------------------|---------------------------------|
| FeO (s)             | -272,0                          |
| CO (g)              | <b>–</b> 110,5                  |
| CO <sub>2</sub> (g) | - 394,0                         |

- a) Indique o tipo de ligação química envolvida em cada substância química reagente deste processo.
- b) Calcule o valor, em kJ/mol, do calor envolvido na produção do ferro metálico a partir do óxido ferroso.

| 9 | FSTM1502   001-Prova-I-Discursiva |
|---|-----------------------------------|
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |
|   |                                   |





A fluoxetina, comercialmente conhecida como Prozac, é utilizada no transtorno obsessivo-compulsivo (TOC), na bulimia nervosa e no transtorno do pânico.

- a) No campo de Resolução e Resposta, circule os heteroátomos presentes na estrutura da fluoxetina.
- b) Quais classes funcionais e qual tipo de isomeria espacial estão presentes na estrutura da fluoxetina?





Quando há falta de insulina e o corpo não consegue usar a glicose como fonte de energia, as células utilizam outras vias para manter seu funcionamento. Uma das alternativas encontradas é utilizar os estoques de gordura para obter a energia que lhes falta. Entretanto, o resultado desse processo leva ao acúmulo dos chamados corpos cetônicos.

(www.drauziovarella.com.br. Adaptado.)



- a) Dê a nomenclatura lupac e a nomenclatura comercial do corpo cetônico representado.
- b) Escreva a fórmula estrutural do isômero de função desse corpo cetônico com a sua respectiva nomenclatura lupac.

| 11 | FSTM1502   001-Prova-I-Discursiva |
|----|-----------------------------------|





Numa sequência de desintegração radioativa que se inicia com o <sup>218</sup><sub>84</sub>Po, cuja meia vida é de 3 minutos, a emissão de uma partícula alfa gera o radioisótopo X, que, por sua vez, emite uma partícula beta, produzindo Y.

- **a)** Partindo-se de 40 g de Polônio-218, qual a massa, em gramas, restante após 12 minutos de desintegração? Apresente os cálculos.
- $\textbf{b)} \ \ \text{Identifique os radiois\'otopos X e Y, indicando suas respectivas massas at\^omicas.}$

| RESolução e resposta |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
| ·                    |  |





Em um ambulatório médico, um paciente foi diagnosticado com pé de atleta, popularmente conhecido como frieira. Os sintomas apresentados eram fortes coceiras e bolhas entre os dedos dos pés. O médico indicou uma pomada específica, de uso tópico, para tratar esse problema.

- a) Considere três medicamentos: um antirretroviral, um fungicida e um antibiótico. Qual desses medicamentos atua diretamente no agente causador dessa infecção? Justifique sua resposta.
- b) Mencione duas condições do ambiente parasitado que favorecem a instalação do causador do pé de atleta.

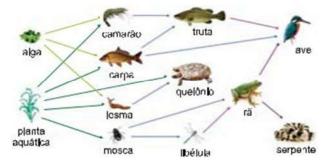
| <ul> <li>RESolução e resposta —</li> </ul> |                                  |
|--------------------------------------------|----------------------------------|
| n=coluşão o loopoota                       |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
|                                            |                                  |
| 13                                         | ESTM1502 L001 Brove I Discursive |





No símbolo da Medicina, a serpente enrolada no cajado é a representação da tradição médica. A serpente, por trocar de pele, representa a renovação, a libertação das doenças, o renascimento. O cajado era um símbolo de autoridade espiritual, quem o usava estava num estágio superior de amadurecimento, experiência e temperança.




(https://megaarquivo.files.wordpress.com)

- a) Na realidade, a serpente não troca de pele, ela perde a camada externa da pele durante a muda. Cite o nome dessa camada e a principal proteína que constitui a sua região córnea.
- b) As serpentes, assim como outros animais, são classificadas como ectotérmicos. O que se entende por animais ectotér-micos? Cite uma estratégia comportamental, utilizada pelas serpentes em dias muito quentes, para manter a tempera-tura corpórea relativamente estável.





Analise a teia ecológica.



(http://classblogs.dovercourt.edu.sg. Adaptado.)

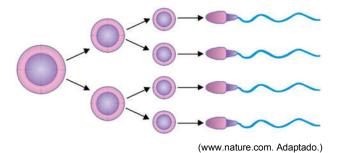
- a) De acordo com a teia ecológica, escreva a cadeia alimentar formada por cinco níveis tróficos.
- b) Considerando as relações tróficas contidas nessa teia, teria maior chance de sobrevivência nesse ambiente a ave ou a serpente? Justifique sua resposta, baseando-se na teia fornecida.

|  | 15 | FSTM1502 I 001-Prova-I-Discursiva |
|--|----|-----------------------------------|
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |
|  |    |                                   |





O sangue humano é formado pelo plasma, que contém água, gases, excretas, proteínas, e pelos elementos figurados, tais como eritrócitos, leucócitos e plaquetas.


- a) Além dos componentes citados do plasma, há um monossacarídeo que quando em excesso, pode ser um indicativo de diabetes. Qual é esse monossacarídeo? Qual é a importância desse monossacarídeo para o metabolismo celular?
- b) Dos elementos figurados, qual deles realiza a diapedese? Explique como esse processo ocorre.

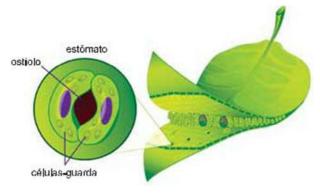
| 4 | RESolução e resposta                                      |
|---|-----------------------------------------------------------|
| 1 | RESolução e resposta ———————————————————————————————————— |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| 1 |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| ı |                                                           |
| J |                                                           |
| J |                                                           |
| ı |                                                           |





Analise a figura que representa um tipo de gametogênese.




- a) Em que órgão humano ocorre a gametogênese representada na figura e que divisão celular a caracteriza?
- b) Em determinado momento dessa gametogênese ocorrem diferenciações celulares originando os gametas. Mencione duas dessas diferenciações celulares que garantem a formação adequada dos gametas.

| 17 | FSTM1502   001-Prova-I-Discursiva |
|----|-----------------------------------|





A imagem ilustra células especiais presentes nas folhas dos vegetais.



(www.kbs.com.au.)

- a) Cite as trocas gasosas que ocorrem por meio do ostíolo quando se encontra aberto durante certos períodos do dia.
- **b)** Explique o motivo pelo qual as plantas aquáticas podem ficar com os ostíolos abertos o dia inteiro, enquanto as plantas terrestres podem fechá-los em períodos mais quentes do dia.

| 40 |
|----|





# QUESTÃ<mark>O 1</mark>7

Na parede do estômago humano há glândulas que secretam o suco gástrico, uma solução aquosa ácida e rica em enzimas que atuam na digestão.

- a) Qual é o ácido presente no suco gástrico? Em um indivíduo saudável, por que esse ácido não digere o próprio estômago?
- b) Cite e explique a função da principal enzima ativa presente no suco gástrico.

| 1 | RESolução e resposta |                                  |
|---|----------------------|----------------------------------|
|   | nesolagas e resposta |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
|   |                      |                                  |
| 7 | 19                   | FSTM1502 L001-Prova-L-Discursiva |





Lamarck, Darwin e Wallace foram importantes evolucionistas que contribuíram para esclarecer a transformação dos seres vivos ao longo do tempo.

- a) Cite as duas leis que norteavam o princípio evolutivo de Lamarck.
- b) O meio ambiente desempenha um papel preponderante na adaptação dos seres vivos. Entretanto, para os evolucionistas citados, o meio exerce papéis diferentes. Como o meio atua sobre os seres vivos de acordo com o lamarckismo e de acordo com a teoria de Darwin-Wallace, respectivamente?

| RESolução e resposta |  |
|----------------------|--|
| 3                    |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |





Analise as imagens.



(http://grahamstudios.net. Adaptado.)

- a) Qual tipo de parto está representado nas imagens? Utilizando dados das imagens, justifique sua resposta.
- b) A seta aponta para um anexo embrionário que é primordial para que ocorra o crescimento fetal normal. Cite o nome desse anexo e uma função exercida por ele.

| 21  | FSTM1502   001-Prova-I-Discursiva |
|-----|-----------------------------------|
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
|     |                                   |
| I . |                                   |





As imagens mostram alguns fenótipos em coelhos. Sabe-se que o alelo C determina a pelagem selvagem, o alelo  $c^{\text{ch}}$ determina pelagem chinchila, o alelo  $c^h$  determina a pelagem himalaia e o alelo  $c^a$  determina a pelagem albina. A ordem de dominância entre eles é  $C > c^{ch} > c^h > c^a$ .

selvagem





albino



(www.bioclima.info)

(http://coelhos.animais.info)

(http://coelhos.animais.info)

(www.petstuff.com.br)

- a) Considere o cruzamento entre um macho Cc<sup>ch</sup> e uma fêmea c<sup>h</sup> a. Quais os possíveis fenótipos dos descendentes desse cruzamento?
- b) Embora sejam fenotipicamente diferentes, por que não podemos afirmar que esses coelhos são de espécies diferentes? De acordo com a genética, como provavelmente surgiram os diferentes alelos nesses animais?





## Classificação Periódica

| 1                                  | _          |                      |           |                 |           |           |           |                   |           |                  |          |            |            |           |           |                  | 18         |
|------------------------------------|------------|----------------------|-----------|-----------------|-----------|-----------|-----------|-------------------|-----------|------------------|----------|------------|------------|-----------|-----------|------------------|------------|
| 1<br>H                             |            |                      |           |                 |           |           |           |                   |           |                  |          |            |            |           |           |                  | 2<br>He    |
| 1,01                               | 2          |                      |           |                 |           |           |           |                   |           |                  |          | 13         | 14         | 15        | 16        | 17               | 4,00       |
| 3                                  | 4          |                      |           |                 |           |           |           |                   |           |                  |          | 5          | 6          | 7         | 8         | 9                | 10         |
| Li                                 | Be         |                      |           |                 |           |           |           |                   |           |                  |          | В          | С          | N         | 0         | F                | Ne         |
| 6,94                               | 9,01       |                      |           |                 |           |           |           |                   |           |                  |          | 10,8       | 12,0       | 14,0      | 16,0      | 19,0             | 20,2       |
| 11                                 | 12         |                      |           |                 |           |           |           |                   |           |                  |          | 13         | 14         | 15        | 16        | 17               | 18         |
| Na<br>23,0                         | Mg<br>24.3 | 3                    | 4         | 5               | 6         | 7         | 8         | 9                 | 10        | 11               | 12       | AI<br>27.0 | Si<br>28.1 | P<br>31.0 | S<br>32.1 | CI<br>35.5       | Ar<br>39.9 |
| 19                                 | 20         | 21                   | 22        | 23              | 24        | 25        | 26        | 27                | 28        | 29               | 30       | 31         | 32         | 33        | 34        | 35               | 36         |
| ĸ                                  | Ca         | Sc                   | l Ti      | V               | Cr Cr     | Mn        | Fe        | Co                | Ni        | Ču               | Zn       | Ga         | Ge         | As        | Se        | Br               | Kr         |
| 39,1                               | 40,1       | 45,0                 | 47,9      | 50,9            | 52,0      | 54,9      | 55,8      | 58,9              | 58,7      | 63,5             | 65,4     | 69,7       | 72,6       | 74,9      | 79,0      | 79,9             | 83,8       |
| 37                                 | 38         | 39                   | 40        | 41              | 42        | 43        | 44        | 45                | 46        | 47               | 48       | 49         | 50         | 51        | 52        | 53               | 54         |
| Rb                                 | Sr         | Υ                    | Zr        | Nb              | Мо        | Тс        | Ru        | Rh                | Pd        | Ag               | Cd       | ln_        | Sn         | Sb        | Те        | 1                | Xe         |
| 85,5                               | 87,6       | 88,9                 | 91,2      | 92,9            | 95,9      | (98)      | 101       | 103               | 106       | 108              | 112      | 115        | 119        | 122       | 128       | 127              | 131        |
| 55<br>Cs                           | 56<br>Ba   | 57-71<br>Série dos   | 72<br>Hf  | 73<br>Ta        | 74<br>W   | 75<br>Re  | 76<br>Os  | 77<br>Ir          | 78<br>Pt  | 79<br><b>A</b> u | 80<br>Hg | 81<br>TI   | 82<br>Pb   | 83<br>Bi  | 84<br>Po  | 85<br><b>A</b> t | 86<br>Rn   |
|                                    |            | Lantanídio           |           |                 |           | -         |           |                   | ' '       |                  |          |            | -          |           |           |                  |            |
| 133                                | 137        | Ŭ                    | 178       | 181             | 184       | 186       | 190       | 192               | 195       | 197              | 201      | 204        | 207        | 209       | (209)     | (210)            | (222)      |
| 87<br>Fr                           | 88<br>Ra   | 89 -103<br>Série dos | 104<br>Rf | 105<br>Db       | 106<br>Sg | 107<br>Bh | 108<br>Hs | 109<br><b>M</b> t | 110<br>Ds | 111<br>Rg        |          |            |            |           |           |                  |            |
| (223)                              | (226)      | Actinídios           | (261)     | (262)           | (266)     | (264)     | (277)     | (268)             | (271)     | (272)            |          |            |            |           |           |                  |            |
| . ,                                | , ,        |                      | 0(: 1     |                 | ` ,       | ` ,       | ` /       | . ,               | ` ,       | ` ′              | J        |            |            |           |           |                  |            |
|                                    |            |                      | 57        | Lantanídi<br>58 | os<br>59  | 60        | 61        | 62                | 63        | 64               | 65       | 66         | 67         | 68        | 69        | 70               | 71         |
|                                    | ro Atômic  | О                    | La        | Ce              | Pr        | Nd        | Pm        | Sm                | Eu        | Gd               | Tb       | Dy         | Ho         | Er        | Tm        | Yb               | Ľu         |
| Sin                                | nbolo      |                      | 139       | 140             | 141       | 144       | (145)     | 150               | 152       | 157              | 159      | 163        | 165        | 167       | 169       | 173              | 175        |
| Massa Atômica Série dos Actinídios |            |                      |           |                 |           |           |           |                   |           |                  |          |            |            |           |           |                  |            |
| ( ) = n.°                          | de massa   | do l                 | 89        | 90              | 91        | 92        | 93        | 94                | 95        | 96               | 97       | 98         | 99         | 100       | 101       | 102              | 103        |
|                                    | mais está  |                      | Ac        | Th              | Pa        | Ü         | Np        | Pu                | Am        | Cm               | Bk       | Cf         | Es         | Fm        | Md        | No               | Lr         |
|                                    |            |                      | (227)     | 232             | 231       | 238       | (237)     | (244)             | (243)     | (247)            | (247)    | (251)      | (252)      | (257)     | (258)     | (259)            | (262)      |

(IUPAC, 22.06.2007.)





#### Texto 1

A "Ideologia de Gênero" afirma que ninguém nasce homem ou mulher, mas deve construir sua própria identidade, isto é, o seu gênero, ao longo da vida.

("Você já ouviu falar sobre a 'Ideologia de gênero'?". www.biopolitica.com.br. Adaptado.)

#### Texto 2

Após longas discussões na Câmara dos Deputados, a palavra "gênero" foi banida do texto final do PNE. Em seguida, estados e municípios tiraram referências à questão de gênero de suas diretrizes para a próxima década.

Temas como diversidade e orientação sexual foram retirados de ao menos oito planos estaduais de educação. Os defen-sores da supressão desses pontos criticam o que chamam de "ideologia de gênero". Para eles, trata-se de uma tentativa de distorcer os conceitos de homem e mulher, destruindo o modelo tradicional de família.

(Flávia Foreque e Natália Cancian. "Discussão sobre gênero volta à pauta da educação com nova diretriz". www1.folha.uol.com.br. 19.07.2015. Adaptado.)

#### Texto 3

A discussão dos planos municipais e estaduais de educação provocou protestos em plenários de todo o Brasil no mês de julho. A polêmica vem desde 2014, quando, durante a tramitação no Congresso Nacional do PNE (Plano Nacional de Educação), a questão de gênero foi retirada do texto.

O texto vetado colocava como meta "a superação de desigualdades educacionais, com ênfase na promoção da igualdade racial, regional, de gênero e de orientação sexual". O PNE aprovado não faz nenhuma menção às duas últimas questões, delegando para estados e municípios a decisão de incluí-las ou não em seus planos.

Movimentos pró-direitos humanos e direitos LGBT consideram a inclusão do debate de gênero nas escolas fundamen-tal para combater a discriminação e a violência física e psicológica de gênero contra lésbicas, gays, transexuais e mulheres.

(Izabelle Mundim. "O que é a ideologia de gênero que foi banida dos planos de educação afinal?". educacao.uol.com.br. 11.08.2015. Adaptado.)

#### Texto 4

Uma proposta de emenda à Lei Orgânica de Campinas que trava qualquer discussão sobre identidade de gênero dentro do Plano Municipal de Educação criou polêmica na cidade. A proposta proíbe medidas que possam incluir na grade curri-cular ou na rotina dos alunos políticas que tratem de "ideologia de gênero, o termo gênero ou orientação sexual". Para os autores da proposta, é responsabilidade da família, e não da escola, instruir as crianças sobre o assunto.

Para os vereadores favoráveis à emenda, a inclusão do tema na grade curricular faria apologia à ideologia que defende que o gênero homem ou mulher, diferentemente do sexo, é uma construção pessoal. Para eles, o gênero é natural, tentar impor outra ideologia causaria um dano terrível à família. É dela a responsabilidade de dizer qual caminho seguir ou não, quando os filhos ainda são crianças.

A professora da Faculdade de Educação da Universidade Estadual de Campinas (Unicamp) e psicóloga, Ângela Soligo, afirma que os gêneros devem ser debatidos em sala de aula, pois ali é o espaço onde a criança pode obter conhecimentos amplos, muitas vezes diversos daqueles que ela tem em casa.

"Não se pode negar que o gênero diferente do sexo exista. A escola tem que fornecer ao aluno subsídios para que ele pense e construa suas próprias opiniões". Ângela acredita ainda que a Câmara não tem alçada para impedir essa discus-são, pois os estudantes têm direito ao conhecimento e o papel da escola é desconstruir preconceitos.

(Cecília Polycarpo. "Proibição de ideologia do gênero em escola cria polêmica". Correio Popular. 29.04.2015. Adaptado.)

Com base na leitura dos textos e em seus próprios conhecimentos, redija uma dissertação, na norma-padrão da língua portuguesa, posicionando-se em relação ao seguinte tema:

A diversidade de gênero deve ser discutida nas escolas ou diz respeito apenas às famílias?





# Os rascunhos não serão considerados na correção.







